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1 Preliminaries

1.1 Concepts

1.1.1 Basics

� C is the set of all complex numbers; it is an algebra.

� E(D, C) denotes a D dimensional (D ≥ 2) vector space built
on C; that means that any element u in that space is refered
to a canonical basis Ω: (e1, e2, ..., eα, ..., eD) and can be
written u =

∑
α uα . eα with uα in C forall α in Ind(D) =

{1, 2, ..., D}.

� In that theory, a rang-D cube is a mathematical object that
should be thought as a regular cubic structure of which each
knot is occupied by a number.

� C(D−D−D) is the set of all cubes of which the knots are oc-
cupied by complex numbers.

� The symbol ⊗ denotes the classical tensor product acting on
two vectors.

� Deformed tensor product:
Let A be an element in C(D−D−D), ⊗A is a tensor product
which has been deformed by the cube A. Concretely that
deformed tensor product acts on pairs of vectors in the fol-
lowing manner:

u, w ∈ E(D, C) :

⊗A(u, w) =
∑
χ

Aχαβ . u
α . wβ . eχ ∈ E(D, C)
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1.1. CONCEPTS CHAPTER 1. PRELIMINARIES

� Pseudo-deformed exterior product:

∀ (q1,q2) ∈ E2(D, K) :

∧A(q1,q2) = ⊗A(q1,q2)−⊗A(q2,q1) = Akij . (q
i
1 . q

j
2− qi2 . q

j
1) . ek

The components of that new vector can allways be separated
into three subsets:

{
∑
i<j

Akij . (q
i
1 . q

j
2 − qi2 . q

j
1)}

+ {
∑
i=j

Akij . (q
i
1 . q

j
2 − qi2 . q

j
1)}

+ {
∑
i>j

Akij . (q
i
1 . q

j
2 − qi2 . q

j
1)}

The second sum vanishes because the discussion is devel-
opped with elements in C. The remaining terms have the
generic formalism:

Ak12 . (q
1
1 . q

2
2 − q12 . q

2
1) ; Ak21 . (q

2
1 . q

1
2 − q22 . q

1
1)

Ak1j . (q
1
1 . q

j
2 − q12 . q

j
1) ; Akj1 . (q

j
1 . q

1
2 − qj2 . q

1
1)

Ak1D . (q
1
1 . q

D
2 − q12 . q

D
1 ) ; AkD1 . (q

D
1 . q

1
2 − qD2 . q

1
1)

etc.

So that:
∀A, ∀ (q1,q2) ∈ E2(D, K) :

∧A(q1,q2) =
∑
i<j

(Akij − Akji) . (q
i
1 . q

j
2 − qi2 . q

j
1) . ek

The result is a new vector in E(D, K); each of its D com-
ponents is the sum of 1 + 2 + ... + (D - 1) = D.(D - 1)/2
terms.

� Deformed Lie product:
In that theory, a deformed Lie product is a pseudo-deformed
exterior product which is built with the help of an anti-
symmetric cube:

∀A : Akji + Akij = 0, ∀ (q1,q2) ∈ E2(D, K) :

[q1,q2]A =
1

2
. ∧A (q1,q2) =

∑
i<j

Akij . (q
i
1 . q

j
2 − qi2 . q

j
1) . ek
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CHAPTER 1. PRELIMINARIES 1.1. CONCEPTS

� Euclidean scalar product: The symbol <..., ...> denotes
a classical euclidean scalar product acting on pairs of ele-
ments taken in E(D, C):

(u, w) ∈ E2(D, C) :< u, w >=
∑
α

uα . wα

� The symbol VD = {E(D, C), ⊗A} represents a vector space
E(D, C) equipped with the deformed tensor product ⊗A.

� An isotropic vector in VD is a non-vanishing vector u in
E(D, C) such that:

⊗A(u, u) = 0

� A Jacobi’s territory is a set of elements (u, v, w) in E3(D,
C) such that:

⊗A(u, ⊗A(v, w)) = ⊗A(⊗A(u, v), w) + ⊗A(v, ⊗A(u, w))

1.1.2 Dual interpretation

Any deformed tensor product is represented by a set of D com-
ponents in C; hence, it has at least and de facto a representation
which is an element in CD. Furthermore, each of its D compo-
nents can be understood as the result (in extenso: the concrete
representation in C) of a function fχ acting on E2(D, C); χ being
in Ind(D).

∀χ ∈ Ind(D), fχ : E2(D, C) → C

(u, w) → fχ(u, w) = Aχαβ . u
α . wβ

As a matter of facts, each function fχ is bilinear and characterized
by a (D-D) matrix [χA] in M(D, C). The superposition of these D
matrices is one of the representations of (the cube) A.

©byPeriat, T.: Matricial derivations, ISBN 978-2-36923-015-1, 9 March 2021.
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1.1. CONCEPTS CHAPTER 1. PRELIMINARIES

1.1.3 Pseudo-Casimir associated with a (D-D) matrix

Any element in M(D, C) can be visually decoded as either the
superposition of D lines or the juxtaposition of D rows. Each line
can be interpreted as the dual representation <χa

α| of some vector

χa
α while each row can be interpreted as the dual representation

|χaβ> of some vector χaβ.

Example: D = 3. The matrix

[χA] =

 Aχ11 Aχ12 Aχ13
Aχ21 Aχ22 Aχ23
Aχ31 Aχ32 Aχ33


can be understood either as:

[χA] = [|χa1 > , |χa2 > , |χa3 >]

with:

|aη >≡

∣∣∣∣∣∣∣
Aχ1η
Aχ2η
Aχ1η

〉
; η = 1, 2, 3.

or, in the same vein, as:

[χA] =

 |χa
1 >

|χa2 >
|χa3 >


This decodage allows the construction of a pseudo-Casimir for
each matrix [χA]:

∀χ ∈ Ind(D), Cas : M(D, C) → C

Cas([χA]) = zχ =
∑
α

<χ aα, χaα >

1.1.4 Pseudo-Casimir vector associated with a cube.

The existence of any deformed tensor product is related to the one
of at least one cube A. That cube can be decomposed in a superpo-
sition of D matrices and a pseudo-Casimir can be associated with

©byPeriat, T.: Matricial derivations, ISBN 978-2-36923-015-1, 9 March 2021.
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each of them. Hence, a set of D complex numbers is automatically
associated with that cube; they may represent the components
of some vector z in E(D, C). I call it the pseudo-Casimir vec-
tor associated with the cube A. As a matter of fact, that vector
only depends on that cube; therefore, a deformed tensor product
can be understood as a special type of interaction between that
pseudo-Casimir vector and a pair of vectors in E(D, C).

Cas : C(D−D−D) → E(D, C)

A → Cas(A) ≡ (..., zχ =
∑
α

<χ aα, χaα >, ...)

1.2 Trivial decompositions

1.2.1 Existence

Proposition:
A deformed product always has at least one trivial decomposition
in CD.

Proof for the deformed tensor product:
Due to the dual interpretation:

⊗A(q1,q2) ∈ E(D, C) → |
∑
i, j

Akij . q
i
1 . q

j
2 >∈ CD

The dual representation can always be put under a mixed formal-
ism:

| ⊗A (q1,q2) >= AΦ(q1) . |q2 >

That representation is a mixed one in that sense that the writing
mixes a matrix, AΦ(q1), and the dual representation |q2> of the
target. The matrix and the vector zero form a pair (AΦ(q1), 0)
which is the so-called most trivial decomposition of the deformed
tensor product at hand.

Proof for the deformed exterior product:
Due to the dual interpretation:

∧A(q1,q2) ∈ E(D, C) → |
∑
i<j

(Akij −Akji) . (qi1 . q
j
2− qi2 . q

j
1) >∈ CD

©byPeriat, T.: Matricial derivations, ISBN 978-2-36923-015-1, 9 March 2021.
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1.2. TRIVIAL DECOMPOSITIONS CHAPTER 1. PRELIMINARIES

Therefore:
| ∧A (q1,q2) >

=∑
i<j

(Akij − Akji) . (q
i
1 . q

j
2 − qi2 . q

j
1)

=

|
∑
i< j

Akij . (q
i
1 . q

j
2 − qi2 . q

j
1) > − |

∑
i< j

Akji . (q
i
1 . q

j
2 − qi2 . q

j
1) >

=

|
∑
i< j

Akij . (q
i
1 . q

j
2 − qi2 . q

j
1) > + |

∑
i> j

Akij . (q
i
1 . q

j
2 − qi2 . q

j
1) >

At the end, this can indeed again be written as:

|[q1,q2]A >= AΦ(q1) . |q2 >

1.2.2 Surjection

Let consider VD and ask the question if a given element [M] in
M(D, C) can sometimes be the representation of a trivial decom-
position?

[M ] ∈ M(D, K), ∃?q1 ∈ VD :

[M ] = [mλµ] = [Aλχµ . q
χ
1 ] = AΦ(q1)

A cube A and a matrix [M] being given, the following scalars can
always be calculated:

∀ ε ∈ Ind(D) : 1qε =
1

2
.
∑
λ

∑
µ

Aλεµ .mλµ

Let suppose the existence of a non-degenerated element [G] in
M(D, K) such that:

1q
δ =

∑
ε

gδε . 1qε =
1

2
.
∑
ε

gδε .
∑
λ

∑
µ

Aλεµ .mλµ

It is then possible to calculate:

∑
δ

Aγδβ . 1q
δ =

1

2
.
∑
δ

Aγδβ .
∑
ε

gδε .
∑
λ

∑
µ

Aλεµ .mλµ

© byPeriat, T.: Matricial derivations, ISBN 978-2-36923-015-1, 9 March 2021.
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CHAPTER 1. PRELIMINARIES 1.2. TRIVIAL DECOMPOSITIONS

These products are the components of [M] when:

mγβ =
1

2
.
∑
δ

Aγδβ .
∑
ε

gδε .
∑
λ

∑
µ

Aλεµ .mλµ

Let remark that:

mγβ =
∑
λ

∑
µ

δλγ . δ
µ
β .mλµ

The condition writes:

δλγ . δ
µ
β =

1

2
.
∑
δ

∑
ε

Aγδβ . g
δε . Aλεµ

Conversely, if a given matrix [M] in M(D, C) is a trivial decompo-
sition, then there exists at least one element 1q in VD such that:

[M ] = AΦ(q1)

If, furthermore, that element belongs to the subset of VD of which
the covariant components have the formalism:

1qε =
1

2
.
∑
λ

∑
µ

Aλεµ .mλµ

Then:

1qε =
1

2
.
∑
λ

∑
µ

Aλεµ . A
λ
δµ . 1q

δ

And there exists an element [G] in M(D, C) allowing the conversion
between the co- and the contravariant components of that vector:

gεδ =
1

2
.
∑
λ

∑
µ

Aλεµ . A
λ
δµ

1.2.3 Example: D = 4; Lorentz transformations.

There is a natural illustration of the previous surjection in math-
ematical physics for spaces with the dimension D = 4 through
the exponent appearing in the representation of a generic Lorentz
transformation:

[Λ] = exp−
1
2
.
∑

λ

∑
µ
ωµν . [Jµν ]

©byPeriat, T.: Matricial derivations, ISBN 978-2-36923-015-1, 9 March 2021.
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1.2. TRIVIAL DECOMPOSITIONS CHAPTER 1. PRELIMINARIES

The generators of that generic transformation are the matrices
[Jλµ] corresponding to three translations (boosts) and three rota-
tions. The ponderation of the generators is realized through the
components of a skew-symmetric matrix [ω]:

[ω] =


0 β1 β2 β3

−β1 0 −θ3 θ2

−β2 θ3 0 −θ1
−β3 −θ2 θ1 0

 ,
A first approximation allows:

[Λ] = Id4 −
1

2
. ωµν . [J

µν ] + ...

In any frame where that approximative relation can be diagonal-
ized:

∀α = 0, 1, 2, 3 : Λα − 1 =
1

2
.
∑
µ

∑
ν

ωµν . J
µν
α

There is a clear formal analogy with the relation describing a spe-
cific subset of V4 allowing the definition of a surjection AΦ when:

A ≡ J

[M ] ≡ [ω]

Three arguments allow to think that both equivalences are sys-
tematically realized:

1. The doubt surrounding the diagonalization can always be
eliminated because the job of Lorentz transformations is to
preserve the metrics. This is written:

[G] = [Λ]t . [G] . [Λ]

And that type of relation makes it possible to diagonalize
the matrices (give more precisions please).

2. Six diagonalized generators1 contain twenty-four scalars (6
× 4). Any cube A in C(4−4−4) of which the components have
anti-symmetric subscripts (Aχ

αβ + Aχ
βα = 0) contains also

only twenty-four distinct scalars.
1Each generator is a (4-4) matrix in M(4, C).

© byPeriat, T.: Matricial derivations, ISBN 978-2-36923-015-1, 9 March 2021.
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CHAPTER 1. PRELIMINARIES 1.2. TRIVIAL DECOMPOSITIONS

3. The correspondance between a set of six weights and the six
components of a skew-symmetric matrix is just a matter of
convention and always realizable.

Hence, any Lorentz transformation can be related to a vector:

q : (...,Λα − 1, ...) = (...,
1

2
.
∑
µ

∑
ν

ωµν . J
µν
α , ...); α = 0, 1, 2, 3.

And the weighting matrix [ω] can be interpreted as a trivial de-
composition of ⊗J(q, ...):

[ω] = JΦ(q)

In that case, a preserved and non-degenerated metric [G] is related
to the generators of Lorentz transformations via the relation:

δλγ . δ
µ
β =

1

2
.
∑
δ

∑
ε

Jδβγ . gδε . J εµλ

1.2.4 Multiplicative morphism

Let consider the relation:

AΦ(⊗A(u, v)) = AΦ(u) . AΦ(v)

It is equivalent to:

Aλχµ . (A
χ
αβ . u

α . vβ) = (Aλαγ . u
α) . (Aγβµ . v

β)

or:
(Aλχµ . A

χ
αβ − Aλαγ . A

γ
βµ) . uα . vβ = 0

There are two types of situations which are compatible with the
existence of that multiplicative morphism:

� type 1: Either there is a limitation on the elements in E(D,
C) for which the morphism exists. That restriction is catched
in the interplay between them and the components of cube
A which is described via the previous relation.

� type 2: Or there is no limitation on the elements in E(D,
C) but the deforming cube A must be such that:

Aλχµ . A
χ
αβ − Aλαγ . A

γ
βµ = 0

© byPeriat, T.: Matricial derivations, ISBN 978-2-36923-015-1, 9 March 2021.
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1.2. TRIVIAL DECOMPOSITIONS CHAPTER 1. PRELIMINARIES

1.2.5 Linear function

A deformed product (whatever its nature is: tensor, exterior, Lie)
is systematically associated with the existence of a trivial decom-
position (i) entirely depending on a pair (cube, projectile) and (ii)
acting on the left side of the target in the dual representation of
E(D, C). This fact allows to consider the trivial decomposition as
the image of a linear function AΦ acting on the elements in E(D,
C).

AΦ : u ∈ E(D, C) → AΦ(u) = [Aλχµ . u
χ] ∈M(D, C)

The linearity is easily proved:

u, v ∈ E(D, C) :

AΦ(u + v)

=

[Aλχµ . (u
χ + vχ)]

=

[Aλχµ . u
χ] + [Aλχµ . v

χ]

=

AΦ(u) + AΦ(v)

On the same vein:

∀ z ∈ C,u ∈ E(D, C) :

AΦ(z .u) = [Aλχµ . z . u
χ] = z . [Aλχµ . u

χ] = z . AΦ(u)

Let denote AΦ(0), the set of all trivial decompositions which can
be calculated with the function AΦ when u is browsing E(D, C);
this set is a subset of M(D, C):

AΦ(0) ⊂ M(D, C)

The function AΦ itself is an element in L(E(D, C); M(D, C)). It
connects two vector spaces.

© byPeriat, T.: Matricial derivations, ISBN 978-2-36923-015-1, 9 March 2021.
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1.2.6 The functor Φ

At a quite more abstract level, Φ can be interpreted as a functor
connecting C(D−D−D) and L(E(D, C); M(D, C)):

A ∈ C(D−D−D) → AΦ ∈ L(E(D, C);M(D, C))

Provided these definitions are accepted:

A + B ≡ Aαχβ + Bα
χβ = (A + B)αχβ = Kα

χβ ≡ K

∀ z ∈ C, z . A ≡ z . Aαχβ = (z . A)αχβ = Kα
χβ ≡ K

this functor is a linear one.

©byPeriat, T.: Matricial derivations, ISBN 978-2-36923-015-1, 9 March 2021.
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2 Derivations

2.1 Jacobi’s territory: existence

Let suppose that such a territory exists or, equivalently, is not
empty; then:

⊗A(⊗A(u, v), w)

=

⊗A(Aχαβ . u
α . vβ . eχ, w

δ . eδ)

=

Aεχδ . A
χ
αβ . u

α . vβ . wδ . eε

And:
⊗A(v, ⊗A(u, w))

=

⊗A(vχ . eχ, A
δ
αβ . u

α . wβ . eδ)

=

Aεχδ . v
χ . Aδαβ . u

α . wβ . eε

And:
⊗A(u, ⊗A(v, w))

=

⊗A(uχ . eχ, A
δ
αβ . v

α . wβ . eδ)

=

Aεχδ . u
χ . Aδαβ . v

α . wβ . eε

15



2.1. JACOBI’S TERRITORY: EXISTENCE CHAPTER 2. DERIVATIONS

And, since Ω is a canonical basis, at components level:

∀ ε ∈ Ind(D) :

Aεχδ . u
χ . Aδαβ . v

α . wβ

=

Aεχδ . A
χ
αβ . u

α . vβ . wδ + Aεχδ . v
χ . Aδαβ . u

α . wβ

But (i) the discussion is developped with elements in C which
is a commutative and an associative algebra; (ii) a lot of indices
and subscripts are mute. These facts allow several regroupments
resulting in:

{Aεαδ . Aδβχ − (Aεδχ . A
δ
αβ + Aεβδ . A

δ
αχ)} . uα . vβ . wχ = 0

There are two types of situations which are compatible with the
existence of a Jacobi’s territory:

� type 1: Either there is a limitation on the elements in E(D,
C) generating a Jacobi’s territory. That restriction is catched
in the interplay between them and the components of cube
A which is described via the previous relation.

� type 2: Or there is no limitation on the elements in E(D,
C) but the deforming cube A must be such that:

Aεαδ . A
δ
βχ − (Aεδχ . A

δ
αβ + Aεβδ . A

δ
αχ) = 0

2.1.1 Jacobi’s territory of type 1:

For now, it can only be remarked that an element in VD which
would generate a Jacobi’s territory of type 1, would have compo-
nents defining a vanishing volumetric form such that:

{Aεαδ . Aδβχ − (Aεδχ . A
δ
αβ + Aεβδ . A

δ
αχ)} . uα . uβ . uχ = 0

© byPeriat, T.: Matricial derivations, ISBN 978-2-36923-015-1, 9 March 2021.
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2.1.2 Isotropic vectors

Per definition, in that theory, any isotropic vector u is such that:

⊗A(u, u) = 0

For a given element u in VD there is perhaps a Jacobi’s territory
(u, u, u) in E3(D, C) which is described with the the Jacobi’s
relation:

⊗A(u, ⊗A(u, u)) = ⊗A(⊗A(u, u), u) + ⊗A(u, ⊗A(u, u))

If that vector u is isotropic, then that relation is always true. Any
isotropic vector in VD generates a specific Jacobi’s territory (u,
u, u) which is of type 1 because it is described via an interplay
between the components: those of cube A and the ones of u.

∀χ ∈ Ind(D) : Aχαβ . u
α . uβ = 0

In that theory, an isotropic vector can be interpreted as a set of D
quadratic forms.

2.1.3 Example

Let consider an element (u, v, v) in E3(D, C) and let admit a
priori that it is a Jacobi’s territory. Then, per definition:

⊗A(u, ⊗A(v, v)) = ⊗A(⊗A(u, v), v) + ⊗A(v, ⊗A(u, v))

If, furthermore, the vector v is isotropic, then:

0 = ⊗A(⊗A(u, v), v) + ⊗A(v, ⊗A(u, v))

This condition can only be realized when the deformed tensor
product at hand, ⊗A, is anti-symmetric.

2.1.4 Jacobi’s territory of type 2:

For this type, all VD can be a Jacobi’s territory, provided the cube
A at hand has the ad hoc property. But what can be learn from
that relation? Let suppose it is a priori true, then it remains true

©byPeriat, T.: Matricial derivations, ISBN 978-2-36923-015-1, 9 March 2021.
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2.1. JACOBI’S TERRITORY: EXISTENCE CHAPTER 2. DERIVATIONS

in inverting two subscripts. Let do it for α and β; both relations
are simultaneously true:

Aεαδ . A
δ
βχ − (Aεδχ . A

δ
αβ + Aεβδ . A

δ
αχ) = 0

Aεβδ . A
δ
αχ − (Aεδχ . A

δ
βα + Aεαδ . A

δ
βχ) = 0

Let add them and then get:

Aεδχ . (A
δ
αβ + Aδβα) = 0

Since vanishing cubes are meaningless for that discussion, that re-
lation tells that any cube which is anti-symmetric on its subscripts
is able to define a Jacobi’s territory of type 1.

Aδαβ + Aδβα = 0

2.1.5 Equivalence

A deformed tensor product built with an anti-symmetric cube is
a deformed Lie product:

∀ (a,b) ∈ E2(D, K), ∀A : Akij + Akji = 0

⊗A(a,b)

=∑
k

(
∑
i

∑
j

Akij . a
i . bj) . ek

=∑
k

(
∑
i<j

Akij . a
i . bj +

∑
i=j

Akij . a
i . bj +

∑
i>j

Akij . a
i . bj) . ek

=∑
k

(
∑
i<j

Akij . a
i . bj + 0 . ai . bj −

∑
i<j

Akij . a
j . bi) . ek

=∑
k

(
∑
i<j

Akij . (a
i . bj − aj . bi) . ek

This is nothing but, the definition of a deformed Lie product:

∀ (a,b) ∈ E2(D, K) :

∀A : Akij + Akji = 0, ⊗A(a,b) = [a,b]A
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2.1.6 Lie brackets

When VD is a Jacobi’s territory of type 2, then the deformed
tensor product with which E(D, C) is equipped is a deformed Lie
product and a Lie bracket because the three relations are true:

∀A : Akij + Akji = 0

[a, a]A = 0

[a,b]A + [b, a]A = 0

[u, [v, w]A]A = [[u, v]A, w]A + [v, [u, w]A]A

A vector space VD which is a Jacobi’s territory of type 2 because
of the anti-symmetry of A, is nothing but a C-Lie algebra.

2.2 Associativity for the deformed tensor product

Let consider the double products again:

⊗A(⊗A(u, v), w) = Aεδχ . A
δ
αβ . u

α . vβ . wχ . eε

and:

⊗A(u, ⊗A(v, w)) = Aεαδ . u
α . Aδβχ . v

β . wχ . eε

A deformed tensor product is associative on VD when:

⊗A(⊗A(u, v), w) = ⊗A(u, ⊗A(v, w))

or, equivalently, when:

Aεδχ . A
δ
αβ . u

α . vβ . wχ . eε = Aεαδ . u
α . Aδβχ . v

β . wχ . eε

or also when:

(Aεδχ . A
δ
αβ − Aεαδ . A

δ
βχ) . uα . vβ . wχ = 0

Once again, there are two types of situations allowing the associa-
tivity:
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� type 1: Either there is a limitation on the elements in E(D,
C) which are associative. That restriction is catched in the
interplay between them and the components of cube A which
is described via the previous relation.

� type 2: Or there is no limitation on the elements in E(D,
C) but the deforming cube A must be such that:

Aεδχ . A
δ
αβ − Aεαδ . A

δ
βχ = 0

2.2.1 Associativity of type 1

Empty subsection.

2.2.2 Associativity of type 2

Let recall that a multiplicative morphism of type 2 is related to
the condition:

Aλχµ . A
χ
αβ − Aλαγ . A

γ
βµ = 0

The substitutions χ → δ and λ → ε transforms it into:

Aεδµ . A
δ
αβ − Aεαγ . A

γ
βµ = 0

The substitutions µ → χ and γ → δ transforms then it into:

Aεδχ . A
δ
αβ − Aεαδ . A

δ
βχ = 0

This formalism is exactly the one of the condition describing an
associative deformed tensor product of type 2. This exploration
recovers a well-known result: if VD is equipped with an associa-
tive deformed tensor product ⊗A, the function AΦ: E(D, C) →
M(D, C) is a multiplicative morphism between two vector spaces;
precisely: VD and {M(D, C), .}; here, . denotes the product of
two matrices.

In particular, if the cube A is compatible with an associativity
of type 2 and anti-symmetric (on its subscripts), then AΦ: E(D,
C)→M(D, C) is a multiplicative morphism between two C-Lie al-
gebras; precisely: V̂ D and {M(D, C), [..., ...]}; here, [..., ...] denotes
a Lie bracket acting on the elements in M(D, C).
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2.3 Matricial derivation.

2.3.1 Intuition introducing the concept.

Let consider an element (u, v, w) in E3(D, C). Let suppose a
priori that it is a Jacobi’s territory. Then, per definition:

⊗A(u, ⊗A(v, w)) = ⊗A(⊗A(u, v), w) + ⊗A(v, ⊗A(u, w))

It is neither a scoop nor difficult to recognize a formal analogy
with the Leibniz rule. This analogy is obtained in interpreting the
symbolism ⊗A(u, ...) as the generic representation for a particular
kind of derivation; let for example write:

⊗A(u, ...) ≡ ∂u

In that first intuitive step, the relation characterizing a Jacobi’s
territory can be rewritten as:

∂u(⊗A(v, w)) = ⊗A(∂u(v), w) + ⊗A(v, ∂u(w))

This rewriting is, stricto sensu, not the historical formulation of
Leibniz rule since that rule was concerning the ordinary derivation
acting on a product of two multi-variables (also vector) numerical
functions (the result is a scalar) f and g.

(f.g)′ = f ′.g + f.g′

But obviously, by visual extrapolation, the definition of Jacobi’s
territory preserves the essence of Leibniz rule:

′ → ∂u ≡ ⊗A(u, ...)

. → ⊗A
F (E(D, C); C) → E(D, C) : f(u)→ u

It translates its meaning on new mathematical sets; more precisely:

1. Any trivial decomposition acts on the left side of elements in
E(D, C) in playing a role equivalent to an ordinary (event.
partial) derivation by respect for one of the variables of which
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a numerical function f(..., uα, ...) depends on.

The difference lies in the fact that that new kind of deriva-
tion is done by respect for a pair (A, projectile).

2. The deformed tensor product at hand acts on pairs in E2(D,
C) and represents the translation of a product between two
numerical functions.

3. That intuitive and optical extrapolation translates the dis-
cussion concerning multi-variables numerical functions in a
vector space. In that sense, that intellectual translation may
be interpreted as the representation of an inverse function
Π−1.

Let suppose that that function Π−1 (i) exists and (ii) connects
elements in F(E(D, C); C) to elements in E(D, C). Let also suppose
that that function is a linear one.

Π−1 : F (E(D, C); C) → E(D, C), Π−1(f)→ u

∀ f1, f2 ∈ F (E(D, C); C) : Π−1(f1 + f2) = Π−1(f1) + Π−1(f2)

∀ z ∈ C, f ∈ F (E(D, C); C) : Π−1(z . f) = z .Π−1(f)

Let complete the list of its specific properties with:

∀ f1, f2 ∈ F (E(D, C); C) : Π−1(f1 . f2) = ⊗A(Π−1(f1), Π−1(f2))

Let now apply these properties to the Leibniz rule and get:

Π−1((f.g)′)

=

Π−1(f ′.g + f.g′)

=

⊗A(Π−1(f ′), Π−1(g)) + ⊗A(Π−1(f), Π−1(g′))

Let write the correspondances:

Π−1(f) = v; Π−1(f ′) = ⊗A(u, v)
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Π−1(g) = v; Π−1(g′) = ⊗A(u, w)

And let complete it with:

Π−1((f.g)′) = ⊗A(u, ⊗A(v, w))

Let state the coherence of the intuition identifying the relation
characterizing Jacobi’s territories and the Leibniz rule when:

⊗A(u, Π−1(f)) = Π−1(f ′)

It can reasonably be suspected that ⊗A(u, ...) plays the role of a
derivation acting on the elements in E(D, C) when the discussion
is restricted to that part of VD for which any element in E3(D, C)
is a Jacobi’s territory. This restriction recalls the considerations
already exposed in that document. There is de facto a one-to-
one correspondance between ⊗A(u, ...) and the matrix AΦ(u).
This fact allows to start a general discussion in which derivations
are represented by matrices. I call them: matricial derivations,
justifying the title of that mathematical exploration.

2.3.2 Discussion

In general, a derivation symbolizes an evolution, the passage from
one state to the next one. It implicitly depends on diverse param-
eters influencing the variations of the mathematical object under
study (position, speed, field, etc.).

The matricial derivation delegates the role normally played by
a set of rules (e.g.: (sin x)’x = cos x) to a set of matrices when the
derivation specifically concerns elements in a vector space.

Since the AΦ are linear functions acting on elements in E(D, C)
and represented by an element in M(D, C), it is legitime to ask if
all elements in M(D, C) are de facto representing matricial deriva-
tions or if the label matricial derivation is only awarded when one
(or several) supplementary criterion(s) is (are) fulfilled?

The historical concept of (ordinary) derivation is intimely related
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to the one of limit and describes the increase or the decrease of a
numerical value.

f ′(x0) = Limx → x0

f(x) − f(x0)

x − x0

The link between the concept of matricial derivation and the one
of limit does not appear here; at least not at a first glance. Any
matrix acting on the left side of a vector contains an information
transforming that vector and, a priori, that’s all.

|v >→ |v >′= [P ] . |v >

This is in peculiar true when the matrix [P] representing the
derivation coincides with the trivial decomposition of some de-
formed tensor product; in that case:

|v >→ |v >′= AΦ(u) . |v >= | ⊗A (u, v) >

In that context, there are yet a lot of meaningful remaining inter-
rogations:

1. What kind of derivation exactly is a matricial derivation?
Does it represent the action of a polynomial of degree two
(a surface) on a given vector?

2. If this guess is the correct interpretation, are there several
pairs ([P], z) -each of them symbolizing one polynomial- such
that:

|v >→ |v >′= [P ] . |v > + |z >= | ⊗A (u, v) >?

This is the so-called (E) question.

3. If the concept of derivation must stay related to the one of
integration, then (i) knowing a given element in E(D, C),
(ii) supposing a priori that it is a deformed tensor product
of which the second argument (the target) represents the
result of an integration of that given element, can we discover
(i) the rule discribing and (ii) the actors involved in the
derivation?
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3 Resumé

This short memoir introduces an intuitive concept of matricial
derivation. A matricial derivation delegates the role normally
played by a set of rules acting on numerical functions (e.g.: (sin
x)’x = cos x) to a set of matrices acting on elements in a vector
space. The deformed tensor products and their diverse decomposi-
tions, especially the trivial ones, are the guiding common threads
illustrating this concept. The progression explains why this con-
cept justifies to ask the (E) question.
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