Quelques rêveries cosmiques cosmoquant-fr

Produit vectoriel déformé et algèbre de Lie

Titre : Produits vectoriels déformés, algèbres de Lie et classification de Bianchi.

Auteur : © Thierry PERIAT.

Immatriculation française : ISBN 978-2-36923-136-3, EAN 9782369231363.

Version : 1.

Date de publication : 8 avril 2019.

Nombre de pages : 19.

Document : accessible en cliquant sur le lien (ouverture dans une nouvelle fenêtre) mais uniquement depuis un ordinateur fixe.

Nom du fichier : Isbn 978 2 36923 136 3 periatv1

Taille : 348.75 Ko

Télécharger

Commentaires.

Ce travail poursuit celui traitant des conditions autorisant la définition d'algèbres de Lie pour les espaces dotés d'un produit tensoriel déformé.

Il cherche à définir ces conditions lorsque la dimension de l’espace vaut trois.

Il met en exergue deux grandes familles de situations pour lesquelles ces algèbres de Lie sont définies.

- L’une d’elle introduit le concept intéressant de triade orthogonale isotropique au sens d’E. Cartan (voir sa théorie sur les spineurs).

Je rappelle également (problème de la réalisation) que la théorie de la relativité offre un terrain idéal pour réaliser ces algèbres de Lie et j’évoque bien entendu la classification de Bianchi obtenue dans ce cadre lorsque l’espace tridimensionnel est homogène.

© Thierry PERIAT.

Date de dernière mise à jour : 02/12/2022